
Automatic Planning of Nanoparticle Assembly Tasks

J. H. Makaliwe and A. A. G. Requicha
Laboratory for Molecular Robotics
University of Southern California

Abstract

This paper presents a practical planning system for 2-D
assembly tasks at the nanoscale. The planner covers a
whole range of problems in planning the assembly of
nanoparticle patterns, including object assignment,
obstacle detection and avoidance, path finding, and path
sequencing. We describe algorithms based on
optimization theory and visibility graph construction, and
show how to integrate them into a comprehensive planner
that has a low-order polynomial complexity and produces
good results. We provide theoretical analysis and
experimental results. This is a first step towards
automating assembly tasks in nanorobotics.

1. Introduction
Robotic manipulation and assembly of objects at the

nanoscale [Requicha, 1999] is a branch of nanorobotics
that has generated considerable interest and promises to
produce revolutionary advances in miniaturization. The
construction and subsequent linking of patterns of
nanoparticles by using the tip of a Scanning Probe
Microscope (SPM) as a robotic end effector has been
demonstrated [Requicha et al. 1998, 1999]. However,
building patterns with large numbers of particles
interactively is tedious and tends to be inaccurate,
because humans have difficulties in performing precise
positioning tasks. Automating the process of moving a
large number of objects (potentially hundreds or
thousands) in near real time is necessary to make such
nanorobotic tasks possible.

It is well known that the general problem of motion
planning in the presence of movable objects is PSPACE-
hard [Wilfong 1988], and therefore optimal solutions are
generally impossible to obtain. Thus, we must find
solutions that are satisfactory by developing practical
algorithms, i.e., heuristic algorithms that have good
performance in terms of planning time and provide good
solutions (albeit not optimal) in terms of execution cost.

Previous research in robotics has mostly avoided
issues of manipulation or motion planning for a large
number of objects amidst obstacles, mainly because of
the complexity involved. Most of the work reported in the
literature deals with motion planning for one or a few
movable objects amidst obstacles . Closer to our problem
is the research of [Ben-Shahar & Rivlin 1998], who
considered several practical algorithms for rearranging
many (about 30) objects by pushing. Their problem
formulation is very similar to ours. However, our work

presents different algorithms and covers several tasks not
addressed in their project.

Several researchers have considered the use of
heuristics to attack problems involving many objects. For
instance, [Barraquand & Latombe 1990, 1991] used a
Monte-Carlo algorithm on a potential field over a
discretized version of a configuration space, and [Chen &
Hwang 1991] considered a heuristic approach for solving
problems with many movable obstacles. However, these
projects deal mainly with the task of path planning in the
midst of many objects, whereas our project is concerned
with assembly, which includes several other issues in
addition to path planning. Furthermore, we employ
different algorithms for the tasks that they also cover.

The main contribution of this paper is the
development of a practical planning system that covers
the whole range of problems in 2-D nanoparticle
assembly planning, including object assignment, obstacle
detection and avoidance, path finding, and path
sequencing. We introduce algorithms based on
optimization theory and visibility graph construction and
show how to integrate them into a comprehensive planner
that has a low-order polynomial complexity. Insofar as
we know, this project is the first attempt to do
comprehensive high-level planning in the field of
nanorobotics.

2. Problem Definition
We abstract the problem of constructing nanoparticle

patterns with an SPM as follows. The system consists of a
robot, a set of movable objects, and a set of obstacles.

§ Let R be a robot, which can assume one of two
states: active or non-active. While active, it will push
any movable object whose center (or, more
generally, reference point) lies in the path the robot is
moving along. While not active, its movement does
not have any effect on any object or obstacle. In
SPM robotics, the robot is the tip, which can be
activated by turning off the vertical feedback
[Requicha et al. 1998]. We assume that robot paths
are piecewise linear.

§ Let O = {o1, o2, … , on} be a set of n identical
objects, each of them movable (i.e., pushable) by R.
For simplicity, each object is assumed to be circular.
For each object, the current location is given.

§ Let P = {p1, p2, . . ., pm} be a set of m polygons that
are not movable by R. They are obstacles that must

be avoided when the robot is moving in an active
state. For each polygon pj, the user can specify a
minimum safe distance – the closest distance allowed
for the robot to move in the neighborhood around the
polygon. In the implementation, the polygons are
represented as lists of edges. The polygons represent
either objects that are actually immovable, or
movable objects that have already been placed and
are considered immovable to avoid interfering with
previously-achieved results.

The task of pattern construction can be defined as
follows:

Given a description of P , initial locations of each
object in O, and a set of destination locations D, find
a sequence of pushing actions by a single robot R
that will rearrange the objects such that an object is
put in each of the destination points in D. Each
pushing action must be done without coming closer
than the minimum distance to any polygon in P.

Since we are using a single robot, the pushing
movements should be done sequentially. In addition, we
assume that the sequence of pushing actions to move a
particular object from its initial to its final location is not
interrupted by pushing actions involving other objects.

We are interested in finding a sequence of motions
that accomplishes the construction task with minimum
effort (where the effort is characterized by the shortest
distance or some other measure). We know that
optimality is not practically achievable, and therefore we
have to turn to practical, heuristic-based techniques. An
instance of the task is given in figure 1a.

In the actual environment, the robot is the tip of a
Scanning Probe Microscope (SPM). For technical details
and references on nanomanipulation, see [Requicha 1999,
Requicha et al. 1998, 1999]. Physically, the device looks
like an arm manipulator. However, since the distances
traveled by the tip are large relative to the environment, it
can be considered as a mobile robot with capabilities to
push objects in the environment.

 a. b.

 c. d.

Figure 1 – (a) Initial problem, (b) result after the assignment of direct paths, (c) after the extended assignment of paths
around obstacles, and (d) final overall sequence. Bigger circles are objects, small dots are destinations.

All the objects and obstacles reside in a sample
prepared by chemical means. The input for the planner
comes from imaging the sample. Certain well-known
image processing techniques such as the Hough
Transform provide practical means to transform the
input into the representation described in the problem
definition. The output is used to control the SPM tip
with the Probe Control Software developed by our
group. In this paper, we focus on planning and assume
that other modules take care of input and output
processing.

3. Overview of the Planner
The input consists of the set of edges in P

(including the minimum safe distances), information
about objects in O (including initial locations, object
types, etc), and the set of destination locations D. The
planner divides the task into several sub-tasks.

Since the objects are identical, the first sub-task is
the assignment of objects to destination locations. In the
first step, we assign objects to destination locations
following a direct path, i.e., a single linear path from the
initial position of the object to its final destination. The
assignment is done such that the total cost for moving all
objects is minimal. (In case there are several types of
objects, each with its respective set of destination
locations, we apply the assignment procedure separately
for each type.) The result of this assignment step is a set
of paths connecting initial and destination locations.
This step, and the related bipartite graph construction
step, are further discussed in section 4.

The first step might fail to assign objects for some
destinations because some objects might be hidden
behind obstacles, making it impossible to find direct
paths from them to the destination locations. Hence, the
next sub-task is to find paths through which the robot
can navigate around obstacles while taking objects to
unassigned destination locations. This is the path finding
step, which may produce several alternative paths. To
select the best path, this result is added to the
previously-found direct paths by the extend bipartite
graph function, and fed back into the assignment
function. These functions constitute the second step and
are elaborated in section 5.

The combined result of the assignment and path
finding steps is either an assignment of a different object
to each destination or the report of failure, in which case
this planner cannot solve the problem. Upon successful
completion we have a list of paths, each connecting one
object and one destination location. The next sub-task is
to impart a total ordering to these paths and produce an
overall path that can be followed by the robot. The main
considerations in this ordering are possible interference
among the individual paths and optimality of the overall

path. This task is handled in the sequencing step, which
is described in section 6.

The final output is a linear sequence of pushing
actions and intermediate robot movements. The overall
algorithm can be described as follows.

Planning (O, P , D)
// assume D ≠ ∅

BG ← BipartiteGraph(O, P, D)
MatchSet ← Assignment(BG)
DNC ← members of D that are not

covered in MatchSet

If DNC ≠ ∅ then
NewPaths ← FindPaths(O, P , DNC)
BG ← ExtendBipartiteGraph

(BG, NewPaths)
MatchSet ← Assignment (BG)
DNC ← members of D that are not

covered in MatchSet
if DNC ≠ ∅ return FAILURE

end if

Overall Path = Sequencing (MatchSet)
If OverallPath = ∅ then return FAILURE
else return Overall Path

end Planning

4. Assignment of Objects to Destinations
We model the assignment of objects to destinations

as a weighted bipartite graph matching problem. First,
we create a bipartite graph G = (V , E) with node
partition V = L ∪ R , where:

§ Each node in L represents an object.

§ Each node in R represents a destination.

§ Each edge between a node in L and a node in R
represents a safe connection between a
represented object and a destination, where a
connection is “safe” if there is a linear path
between the object and the destination that is
outside the minimum safe distance from each
polygon.

Define the weight for such an edge according to
the cost criterion, e.g., as the Euclidean length
of the path.

Checking whether a path is safe is done by testing
the distances between the path and each edge of the
polygons. This can be done efficiently with standard
geometric algorithms.

The BipartiteGraph function runs in O(nde) where
n is the number of objects, d the number of destinations,
and e the total number of edges in P. In practice, we can
greatly reduce the number of tests by only considering

polygon edges that are in the neighborhood of the path
being considered. This can by done by employing
appropriate data structures to organize the edges of the
polygons.

Having modeled the problem as a bipartite graph,
the assignment of objects to destinations now becomes
an instance of the classical problem of weighted
bipartite matching: to choose a minimum-weight set of
edges in the bipartite graph. The Assignment function
does this by implementing the Hungarian Algorithm
[Knuth 1993]. It returns a set of direct paths between the
objects and the destinations and runs in O(n2d). The
Hungarian Algorithm guarantees optimal graph
matching (hence, optimal overall assignments for direct
paths). Note that the weight between edges can represent
any appropriate cost criterion.

Figure 1b shows the result of BipartiteGraph
construction and running the Assignment function on the
situation in figure 1. The algorithm assigns as many
objects as possible with safe straight-line paths.

5. Finding Paths Around Obstacles
Note that in figure 1b some destinations do not have

an object assigned to them because some objects are
hidden behind obstacles and cannot be found by the
Assignment function, which considers direct pahs only.
Hence, we need another step to find paths that navigate
around obstacles. This is done by the FindPaths
function, which tries to find paths using visibility graph
construction and a shortest path algorithm.

First, we consider the destinations that do not have
objects assigned to them. This does not guarantee
optimality, but it makes sense heuristically to focus the
effort in the destinations that fail.

Next, we use the visibility graph method [Latombe,
1991] to find possible paths between objects and
unassigned destinations. Since the robot can only push
following piecewise linear paths, a slight modification is
implemented in constructing the boundary of the
configuration space around convex corners. Ideally, for
moving circular objects, the boundary of the
configuration space around such corners is a circular arc.
We approximate this with piecewise linear segments.
This is illustrated in figure 2.

Using the visibility graph, we find shortest paths
connecting each unassigned destination to the initial
positions of each object. To find the paths, we run
Dijkstra’s single-source shortest path algorithm
[Cormen et al. 1990] for each unassigned destination.

The time complexity of the visibility graph
construction is O(n2). The Dijkstra algorithm is run for
each unassigned destination, with time complexity
O(dn2). The entire running time of FindPaths is thus
O(dn2).

 l

 x2

 x1

 x3

Figure 2. Approximating the boundary of the
configuration space around convex corners. The
bold line is the real boundary of the obstacle.
The circular arc around the corner x1 is the
ideal configuration space boundary. We
approximate it with the segment x2 – x3 , which
is tangent to the circular arc at the point where
it meets the angle bisector l. Points x2 and x3

becomes vertices in the visibility graph.

Corresponding to each new path found by
FindPaths, a new edge is added in the bipartite graph
constructed in the BipartiteGraph construction step.
This extension is performed by the
ExtendBipartiteGraph function. The extended bipartite
graph is then fed back into the Assignment function to
find assignments (matchings) that incorporate both
direct paths and paths that navigate around obstacles for
destinations that cannot be reached with direct paths.
With the extended bipartite graph, Assignment still runs
in O (n2d). Continuing from figure 1b, figure 1c shows
the result of applying the new assignments after
incorporating the results of FindPaths. Note that some
previous matches might get reassigned.

The combination of FindPaths and bipartite
matching on the extended bipartite graph tries to
approximate the optimal solution by:

§ using the visibility graph method, which
guarantees shortest paths around obstacles for
unassigned destinations, and

§ applying the Hungarian Algorithm, which
guarantees an optimal assignment that takes
into account direct paths and the additional
paths found by the visibility graph method.

The only possibility of missing an optimal
assignment for a destination stems from the priority
given to direct paths. For destinations for which a direct
path to an object has already been found, we don’t try to
consider alternative paths (to other objects) around
obstacles, although they might actually be shorter than
the direct path. Hence, by giving priority to direct paths,
the algorithm might miss a shorter (indirect) path.

However, since pushing actions following paths around
obstacles involve more complicated maneuvering than
direct paths, the priority given to direct paths is justified.

We have also explored an interesting alternative for
implementing Findpaths by adapting the idea of the
probabilistic roadmap planner (PRM) [Kavraki et al.
1996]. It works by incrementally adding random points
that serve as intermediate points between destinations
and objects. The random points are thrown in the
neighborhood of the destination, and the neighborhood
is incrementally increased until we find a path that
connects the destination and an object via the
intermediate points.

The PRM approach is better than the visibility
graph method in cases where the objects are actually
close to the destinations (e.g., if they are just around the
corner). A path connecting such points is quickly found
by working incrementally, without the burden of
computing the visibility graph for the entire system.
However, our experiments indicate that the visibility
graph method is more efficient in the general case. In
addition, it is complete while the PRM is only
probabilistically complete, and it guarantees finding
shortest paths, whereas the PRM does not.

6. Sequencing the Paths
At this point, we have a set of paths, each

representing a pushing movement for moving one object
to its destination. To integrate them into one path, we
have to find a total ordering among them. This is the
task of the Sequencing step. (Note that if there are
several types of objects, the assignments will be done
separately for each type, but the sequencing step will
combine all of them.)

There are two considerations in sequencing the
paths. First, we have to put precedence constraints
between paths that might interfere with each other.
Second, we try to minimize the movement of the robot
between the pushing actions, to obtain results closer to
optimal.

We create a new graph, a directed graph called the
PrecedenceGraph, which is defined as follows:

§ Each node of the PrecedenceGraph represents one
pushing action, i.e. one path found by the
Assignment function.

§ Each directed edge of the PrecedenceGraph
represents a precedence constraint between the
pushing actions.

An example of a situation that requires a precedence
constraint is shown in figure 3.

 Pushing Paths

 pa1

pa2 pa3

PrecedenceGraph pa1

pa2 pa3

Figure 3. An Example of a Precedence Constraint.

The top of figure 3 shows three pushing actions.
Pushing action pa2 might interfere with the motion of
pa1 if pa2 is done first. This possible interference can be
avoided by requiring that pa1 precede pa2. The
PrecedenceGraph for this problem is shown at the
bottom of figure 3. Edges show required precedence
relations between actions.

Having constructed the PrecedenceGraph, a total
(linear) ordering of the actions can be found by a
Topological Sort algorithm [Cormen et al. 1990]. The
idea is to repeatedly find a node of in-degree 0 and
select it as the next one in the total order.

To reduce the intermediate movements between
pushing actions, we can apply heuristics in the
topological sort procedure. When there are alternatives
in choosing nodes with in-degree 0, we choose that
which minimizes the cost of the intermediate robot
movement from the last chosen pushing action.

Checking precedence constraints takes O(d2t2)
where d is the number of destinations and t is the
number of intermediate points created in FindPaths. The
d2 reflects the fact that in the worst case we have to
check each pair of pushing actions, and the number of
pushing actions is equal to the number of destinations.
The factor t2 comes in because each path might consist
of several intermediate points. However, the bound is
not tight. In practice we found that d2 strongly dominates
t2 since most of the paths are direct paths or paths with
only a few intermediate points.

Topological sorting takes O(d + r) where r is the
number of precedence constraints. If we use heuristics,
at each step we need to compare nodes with in-degree 0,
in which case the time complexity becomes O(d2).

The optimality of the Sequencing function is not
guaranteed since it is an instance of the Traveling
Salesperson Problem, which is NP-complete.
Furthermore, due to the precedence constraints, the
graph is not complete, and the cost function fails to
satisfy the triangle inequality, a condition that is usually
assumed in developing good algorithms. In general, if

the triangle inequality assumption is dropped, good
approximate tours cannot be guaranteed [Cormen et al.
1990]. However, our algorithm tries to reduce the
execution cost by using the heuristic described above,
which in effect performs all the motions in a
neighborhood before moving to the next one.

Apart from optimality, there is an important
question of whether the sequencing guarantees
completeness. This is not the case primarily due to the
assumption that in the total ordering of the paths each
pushing movement taking an object to its destination is
not interrupted by pushing movements for other objects.
It is possible to construct examples where the movement
of an object should be broken into more than one
separate segments. First, we should move the object to a
temporary location to give way for a second object,
followed by pushing the second object, and finally
concluded with pushing the first object from its
temporary location to its destination. We found out that
situations that need this kind of maneuvering rarely arise
in the kind of nanoparticle assembly tasks we are
considering. An algorithm that handles this situation is
discussed in [Ben-Shahar & Rivlin, 1998].

Figure 1d shows the final result of sequencing on
the situation in figure 1c.

7. Results and Discussion
The planner (apart from sensing and motor control)

is written in Java and executes on a Sun Ultra-10
workstation. We have tested it on several problems with
50 objects. Running times for 50 objects and 10
obstacles are in the range of 5 – 10 seconds.

Each subtask is accomplished in low-order
polynomial time. Furthermore, experimental results
show that many of the complexity bounds are not tight.
In practice, the influence of the e factor could be greatly
reduced, and in the precedence detection the t2 factor is
usually a small number.

The optimality of the pushing paths (i.e. paths
where the robot is pushing an object) is guaranteed, save
for the fact that we give priority to direct paths over
paths that involve turns around obstacles.

Optimality is not guaranteed for the motion of the
robot between pushing actions. However, this subtask is
known to be intractable. All optimal solutions for that
problem are exponential and, to the best of our
knowledge, no practical algorithm has produced results
within a constant ratio of the optimal ones.

The completeness is not guaranteed in cases where
the pushing movement for one object has to be broken
into more than one separate segments, interrupted by the
pushing movement for another object. However, this
situation rarely arises in the tasks we are working on.

In summary, we have demonstrated a practical
comprehensive planner for constructing 2-D
nanoparticle patterns. It is efficient and produces good
plans. This is a first step towards automating
nanoparticle assembly tasks in nanorobotics.

References
[Barraquand & Latombe 1990] J. Barraquand and J.-C.
Latombe, “A Monte-Carlo algorithm for path planning
with many degrees of freedom”, IEEE Int. Conf. Robot.
Automat., 1990, pp. 1712 – 1717.

[Barraquand & Latombe 1991] J. Barraquand and J.-C.
Latombe, “Robot motion planning: a distributed
representation approach”, Int. J. Robot. Res., Vol. 6, No.
10, pp. 628 – 649, December 1991.

[Ben-Shahar & Rivlin 1998] O. Ben-Shahar and E.
Rivlin, “Practical pushing planning for rearrangement
tasks”, IEEE Trans. Robotics and Automation, Vol. 14,
No. 4, pp. 549 – 565, August 1998.

[Chen & Hwang 1991] P. C. Chen and Y. K. Hwang,
“Practical path planning among movable obstacles”,
IEEE Int. Conf. Robot. Automat., 1991, pp. 444 – 449.

[Cormen et al. 1990] T. H. Cormen, C. E. Leiserson, and
R. L. Rivest, Introduction to Algorithms. Cambridge,
MA: The MIT Press, 1990.

[Kavraki et al. 1996] L. Kavraki, P. Švesta, J.-C.
Latombe, and M. H. Overmars, “Probabilistic roadmaps
for path planning in high dimensional configuration
spaces”, IEEE Trans. Robotics and Automation,
December 1996, pp. 566 – 580.

[Knuth 1993] D. E. Knuth, The Stanford GraphBase.
New York, NY: The ACM Press, 1993.

[Latombe 1991] J-C. Latombe, Robot Motion Planning.
Norwell, MA: Kluwer, 1991.

[Requicha, 1999] A. A. G. Requicha, “Nanorobotics”, in
S. Nof, Ed., Handbook of Industrial Robotics. New
York, NY: Wiley, 2nd ed., pp. 199 – 210, 1999.

[Requicha et al. 1998] A. A. G. Requicha, C. Baur, A.
Bugacov, B. C. Gazen, B. Koel, A. Madhukar, T. R.
Ramachandran, R. Resch, and P. Will, “Nanorobotic
assembly of two-dimensional patterns”, Proc. IEEE Int.
Conf. Robot. Automat., Leuven, Belgium, May 16 – 21,
1998.

[Requicha et al. 1999] A. A. G. Requicha, R. Resch, N.
Montoya, B. E. Koel, A. Madhukar, and P. Will,
“Towards hierarchical nanoassembly”, Proc. Int’l Conf.
on Intelligent Robots & Systems (IROS ‘99), Kyongju, S.
Korea, pp. 889-893, October 17-21, 1999.

[Wilfong, 1988] G. T. Wilfong, “Motion planning in the
presence of movable obstacles”, Proc. ACM Symp.
Computational Geometry, 1988, pp. 279-288.

