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Abstract Self-assembly of active, robotic agents, rather
than of passive agents such as molecules, is an emerging
research field that is attracting increasing attention. Active
self-assembly techniques are especially attractive at very
small spatial scales, where alternative construction methods
are unavailable or have severe limitations. Building nanos-
tructures by using swarms of very simple nanorobots is a
promising approach for manufacturing nanoscale devices
and systems.

The method described in this paper allows a group of
simple, physically identical, identically programmed and re-
active (i.e., stateless) agents to construct and repair polygo-
nal approximations to arbitrary structures in the plane. The
distributed algorithms presented here are tolerant of robot
failures and of externally-induced disturbances. The struc-
tures are self-healing, and self-replicating in a weak sense.
Their components can be re-used once the structures are no
longer needed. A specification of vertices at relative posi-
tions, and the edges between them, is translated by a com-
piler into reactive rules for assembly agents. These rules lead
to the construction and repair of the specified shape. Simu-
lation results are presented, which validate the proposed al-
gorithms.
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1 Introduction

Self-assembly is a process in which autonomous compo-
nents join themselves to form more complex structures.
Examples of self-assembly are all around (and within) us:
atoms assemble themselves into molecules, supramolecu-
lar structures and crystals; molecules form membranes, or-
ganelles and cells; in turn, cells self-assemble into tissues
and entire organisms. In contrast to what happens in na-
ture, non-chemical engineered systems have not used self-
assembly as a manufacturing process until now. (Chemistry
itself is largely based on self-assembly processes.) Interest
in self-assembly has been increasing rapidly over the last
decade because it is an inherently parallel process that seems
well-suited to the fabrication of complex structures from
the bottom-up, using micro or nanoscale components. Many
manufacturing processes are available at the macroscale,
and, in our opinion, self-assembly is not attractive at such
scales, except possibly for some niche applications. How-
ever, there are few other promising alternatives for the mass
production of nanosystems.

The structures built by traditional (passive) self-assembly
in the past (Adleman 2000; Winfree et al. 1998) have
tended to be symmetric and not very useful from the point
of view of such potential applications as nanoelectronics.
(However, the more recent work on DNA origami Rothe-
mund 2006 can produce arbitrary structures.) These pas-
sively self-assembled structures are built by systems that
emulate chemistry: components exist in a medium that im-
parts on them the necessary motions for them to meet (of-
ten by thermal agitation), and complementary components
attach to one another when they come into contact. Comple-
mentarity may have several forms, such as molecular recog-
nition, hydrophobic/hydrophilic behavior, or Watson-Crick
pairing for DNA strands. The work reported in this paper
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was initiated before DNA origami techniques were known,
and was motivated by a few simple questions such as the fol-
lowing. What if we make the components “active”, by giv-
ing them a bit of “intelligence”, by having sensors, control
logic, and autonomous motion? In other words, what if the
components are robots, albeit very simple ones? What can
be built by such robots? Can they build arbitrary structures?
How? What happens when the robots malfunction? What
yields does one get? Can noise be rejected by non-global
procedures?

A small number of tiny robots is not likely to self-
assemble into something useful. Therefore, questions such
as those posed above lead naturally to the study of robot
swarms. Self-assembly is a special case of self-organization,
and, in turn, a robot swarm is a special case of a distrib-
uted system. Therefore, the study of self-assembly by robot
swarms raises a host of intellectually interesting and chal-
lenging problems related to emergent behavior, robustness,
tolerance to faults, adaptability in dynamic environments,
and the relationship between local and global behavior. Fur-
thermore, we contend that self-assembly without self-repair
is not likely to be practically useful, because it is almost cer-
tain that components will fail. The system must be able to
compensate for component failure on the fly, or it will be
down most of the time. The primary goal of this paper is
to present algorithms for building self-assembling and self-
repairing shapes by a swarm of robots whose assumed capa-
bilities are inspired by those we expect to find in the nanoro-
bots of the future. We present a complete solution to a spe-
cific instance of the difficult problem of “compiling” global
behavior into local rules. We illustrate the behavior of the
algorithms by extensive simulations.

There is a huge amount of literature that can be consid-
ered relevant to robotic self-assembly. Constructing a frame-
work in which all this work can be put in perspective is a
worthwhile task, but outside the scope of this paper. It is
also a non-trivial task because the various systems and al-
gorithms described in the literature make different assump-
tions, have different models and goals, and therefore are
difficult to compare. Here we will simply list representa-
tive work in the diverse relevant areas, and provide cita-
tions for entries into the literature, without attempting to
be complete. The following are related areas: swarm ro-
botics (Dorigo and Şahin 2004; Şahin and Spears 2005);
swarm intelligence in social insects and other biological sys-
tems (Bonabeau et al. 1999); self-replication (Zykov et al.
2007); passive self-assembly (Winfree et al. 1998; Rothe-
mund 2006; FNANO 2006); modular self-reconfigurable ro-
botics (Shen et al. 2000; Shen and Yim 2002; Rus and
Chirikjian 2001); cellular automata (von Neumann 1966;
Buchi and Siefkes 1989); and distributed robotics, especially
the study of robot formations (Bahceci et al. 2003).

Three main research groups have recently addressed the
problem of building arbitrary shapes by self-assembling ro-
bot swarms. They are Nagpal’s group at Harvard (Nag-
pal 2002; Kondacs 2003; Stoy and Nagpal 2004; Wer-
fel 2004, 2006), Klavins’ at the University of Washington
(Klavins 2004; Klavins et al. 2004, 2006; Bishop et al. 2005;
Burden et al. 2006), and the robotics group at the Univer-
sity of Southern California (Wawerla et al. 2002; Jones and
Matarić 2003; Arbuckle and Requicha 2004, 2005, 2006;
Arbuckle 2007).

In this paper we present a novel, communication-based
swarm algorithm that has strong self-repairing capabilities
and parsimoniously uses resources such as memory and
computation. The remainder of the paper is organized as
follows. We begin with an overview of the model and al-
gorithms in Sect. 2. Then we present a complete but very
simple example in Sect. 3. Sections 4, 5 and 6 are devoted
to a general discussion of the edge-building rules, the com-
piler, and the simulator. Results are presented in Sect. 7 and
we draw conclusions in a final section.

2 Overview

We model the problem as follows. We assume that there is a
very large number of robots, which are unit squares aligned
with the x, y axes in a plane. The robots may move trans-
lationally in the plane, and initially execute random walks.
All of the robots are identical and identically programmed.
When two robots meet, they may exchange messages; while
they are exchanging messages they remain attached to each
other, but they cannot maintain their grasp if the messages
stop. (It suffices for one of two connected robots to stop
sending messages for the binding to break.) The robots are
programmed by a set of reactive rules; when a robot receives
a message, it consults its table of rules and executes the
rule that corresponds to the received message, which usu-
ally requires sending other messages. Therefore, there is no
internal (computational) state stored in the robots—the state
of the system is “externalized” in the circulating messages.
(Of course, the robots do have a physical state that is used
by the simulator—see Sect. 6.) Rule execution may entail
some simple arithmetic operations, typically incrementing
or decrementing a hop counter. We seek algorithms compat-
ible with minimalistic robots, with very limited memory and
computational capabilities.

This model is inspired by the capabilities we expect in
the nanorobots of the future. For example, communication
is assumed to take place only between adjacent robots in
contact, because nanorobots are likely to be able to commu-
nicate only chemically, by molecular recognition between
molecules presented on their surfaces, or perhaps electro-
magnetically at very small distances. Assuming that the ro-
bots do not rotate may seem unduly restrictive, but we could
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instead postulate self-aligning connections when robots be-
come attached. Whether our model is adequate or not for
swarm nanorobots must remain in the realm of speculation
until such robots are built, but we believe that the assump-
tions are reasonable. Regardless of our motivation, we think
that the model and algorithms are interesting on their own.

The input to our system is a polygon, defined by what
is called in geometric modeling a boundary representation
(Requicha 1980), i.e., a set of edges, or, equivalently, an or-
dered set of vertices, with two consecutive vertices defin-
ing an edge. Vertices are defined by their x, y coordinates in
some arbitrary coordinate system for the plane. The input is
fed to a compiler, which runs off-line in a regular computer
such as a standard PC. First it performs a few simple geo-
metric computations to deal with such problems as internal
holes and sharp acute angles. The result of this first stage of
the compiler is another polygon that can be easily approx-
imated by a set of our square robots, forming a so-called
spatial enumeration for the polygon (Requicha 1980).

Conceptually, our algorithm builds a polygon from the
outside in, by first constructing its boundary and then fill-
ing up the interior. (In practice, boundary construction and
interior filling operations proceed in parallel, but since the
effects of the interior filling operations are small until the
boundary is completed, we will ignore this fact to simplify
the exposition.) The boundary is constructed outwards from
some arbitrary point in it. Robots may attach to either end-
point of the evolving boundary. When the boundary is com-
plete, we fill the interior by a process that is similar to dif-
fusion across a porous membrane, and schematically shown
in Fig. 1. Specifically, when a wandering robot attaches to
another one already on the boundary, both move inward by
one step, so that the new robot is now on the boundary and
the old one is now in the interior of the polygon. The in-
terior robot may simply be released and continue to wan-
der around randomly, but inside the polygon, or a more so-
phisticated and efficient “guided” process can be used, al-
though it requires more capable robots that can move along
and follow the boundary of the polygon (Arbuckle and Re-
quicha 2005). Details of the guided method may be found
in Arbuckle (2007). Observe that a robot’s ability to move
in a specific direction is only needed for the filling proce-
dures. If all that is wanted is a polygonal boundary and the
medium imparts a random motion to the robots, these do not
require on-board propulsion or steering capabilities. Video
1 shows an example of filling the interior of a structure with
the guided method.

In Fig. 1 and similar figures throughout this paper, agents
are represented as squares with one V shape and one in-
verted V shape attached to each side. These shapes repre-
sent both the ability to attach to neighboring agents and the
ability to exchange messages with them, since both abilities
are mutually dependent. When two agents are depicted with

Fig. 1 (1) Robots A, B, C and D are taking part in a boundary, while
robot E is wandering outside. (2) Wandering robot E attaches to the
outer face of robot B, which is part of an edge being built. (3) Both ro-
bots move in by a distance equal to the robot’s (edge) size. (4) Robot B
detaches from E, which is now part of the boundary, and moves around
randomly in the interior of the polygon. Agents connected by nested
V shapes (e.g. C and D above) are joined together and can exchange
messages

their V shapes nested together, this represents agents that are
bound together and thus capable of exchanging messages.
The messages themselves are represented by arrows in the
figures.

The most complicated process is the construction of the
polygonal boundary, and we will focus on it in the remain-
der of this paper. For simplicity of exposition, we con-
sider only simple polygons, i.e., polygons without holes and
whose boundaries do not self-intersect (or, mathematically,
boundaries that are homeomorphic to a circle) although the
system can accommodate arbitrary polygons. The compiler
produces a set of parameterized generic rules for growing
edges. These are discussed in Sect. 4 below—see also the
example of Sect. 3. Suffice it to say here that a single set of
edge rules is enough, regardless of how many edges a poly-
gon may have. In addition to these generic edge rules, the
compiler produces vertex rules, one set per each vertex of
the polygon. A vertex rule is equivalent to stating if you were
reached from edge with ID = X, then emit a “grow edge”
message with ID = X′ in direction D′, and with length L′.
Identifiers for each of the edges are generated by the com-
piler. Four vertex rules are needed per vertex, two for each
of the edges incident with it. It is very easy for the compiler
to generate these vertex rules given the polygon’s vertex list.

Given the complete set of vertex rules for a polygon, and
assuming that the edge growing rules produce the desired
result—we will return to this point in later sections—the
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polygonal boundary is built correctly as long as robots can
reach the current endpoints of the boundary construction.
Since we assume that the random walk executed by the ro-
bots will eventually bring at least one robot to every point
of the plane, the construction can only fail if there are not
enough robots, or if an obstacle intersects the desired bound-
ary.

Earlier work such as Arbuckle and Requicha (2004,
2005) showed that arbitrary polygons could be built by robot
swarms programmed as finite-state machines (FSMs). Why
did we decide to abandon the FSM approach and study re-
active robots? Simply because we were unable to achieve
the desired self-repair capabilities with the FSM algorithms.
Problems arise because a robot’s internal state, stored in
its memory, can easily become incompatible with the real,
physical situation, as a result of faulty operations. For ex-
ample, a robot’s memory may tell it that it is attached to an-
other, when in reality it is not, but the sensor that would up-
date its memory is malfunctioning. These incompatibilities
result in errors in the structure being built. As we will see
below, the process described here is self-healing. (We use
“self-healing” and “self-repair” interchangeably in this pa-
per.) However, this requires another set of messages besides
those described so far. We explain these with the example of
next section.

3 An example

The principles of operation of our algorithms are best intro-
duced through a simplified example. Consider a large num-
ber of agents (robots) which move randomly on a plane. The
agents are all identical unit squares (in some arbitrary units),
orthogonally oriented, and have identical programs, which
consist of sets of purely reactive rules. These rules prescribe
actions to be taken when certain messages are received. Ac-
tions typically involve sending messages to other agents.

We consider for this example four types of messages, de-
noted GE, GV, AE and AV. The characters in these message
names are mnemonics for grow (or build), G; acknowledge
(or provide feedback), A; edge (or line), E; and vertex (or
node), V. When a message is received in one of the four
sides of the agent, it triggers the emission of other messages,
which may be sent forward, backward, left or right, with re-
spect to the direction of the incoming message.

Table 1 shows the ten rules needed for the example. The
messages in the table may have up to three parameters: X is
an edge identifier, P denotes the position of an agent within
an edge, and L is the length of an edge. In the example we
build a structure consisting of two vertices which bound an
edge made from three agents (L = 2) and then start build-
ing a second edge, orthogonal to the first. The vertices are
not considered part of the edge, and positions within an edge

Table 1 Rules for the example

Rule No. Input Output

1 GE(X, P > 0, L) F: GE(X, P − 1, L)
2 GE(X, P = 0, L) F: GV(X)
3 GE(X, P < L, L) B: AE(X, P + 1, L)
4 GE(X, P = L, L) B: AV(X)
5 AE(X, P < L, L) F: AE(X, P + 1, L)
6 AE(X, P = L, L) F: AV(X)
7 AE(X, P > 0, L) B: GE(X, P − 1, L)
8 AE(X, P = 0, L) B: GV(X)
9 GV(X) LE: GE(X′, L′, L′)

B: AE(X, 0, L)
10 AV(X) B: GE(X, L, L)

vary from P = 0 to L. The second column in the table shows
the incoming message, which triggers the effects that ap-
pear in the third column. The output messages have a direc-
tion, relative to that of the incoming message. There are four
such directions, corresponding to the four faces of the agent:
F, for forward; B, for backward; R, for right; and LE, for left.

We begin with a seed, which consists of the pair of agents
A and B, depicted at the top left of Fig. 2. The agents ex-
change the messages shown in the figure.

Observe that the message GE(X, 2, 2) sent by A to B,
by rule 4, causes B to send back to A the message AV(X).
In turn, when A receives this message, by rule 10, it sends
back to B the message GE(X, 2, 2). These GE and AV mes-
sages constitute a self-reinforcing loop, and the A–B group
therefore is stable, i.e., it can exist indefinitely, remaining
attached and continuing to exchange messages all along.
Furthermore, by rule 1, B will attempt to send the message
GE(X, 1, 2) to any agent that may attach to its forward side.
Note that this is a grow-edge message similar to that which
B received from A, but with the position parameter P decre-
mented by one.

Suppose now that an agent C in its random walk attaches
to B as shown in Fig. 2. By rule 1, C will send forward a GE
message with P = 0, and, by rule 3, it will send back to B an
AE message with P = L = 2. Note that any other agent that
attempts to attach to another face of A or B will eventually
get detached because there are no messages being sent to it.

Continuing, D will attach to C and send forward, by
rule 2, a grow-vertex message, and, by rule 3, send back to
C an AE message with P = 1. Now, when E attaches to D
it will, by rule 9, send an AE message back to D, and also
start another edge, by sending GE(X′, L′, L′) to the left. The
identity of this new edge, X′, and its length, L′, are prepro-
grammed in the agents’ rule set.

The structure shown at the bottom of Fig. 2 reveals an
interesting message pattern. Specifically, we have a set of
grow-edge messages moving forward and decrementing a
position counter until they reach a vertex, and also a second
set of acknowledge messages moving backward and incre-
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Fig. 2 Sequence of attachments and messages for the construction of
a complete edge and the beginning of a second one, starting at the top
and progressing towards the bottom

menting the position counter. It is easy to see that any pair of
contiguous agents forms a stable loop, much like A and B,
as discussed above. Furthermore, any connected piece of the
structure is also stable. This has important consequences that
we will discuss now.

Suppose that agents A, B and E get detached due to exte-
rior forces or because they malfunctioned and stopped send-
ing messages. C and D will continue to exchange GE(X, 0,
2) and AE(X, 1, 2) messages indefinitely, per rules 3 and 7.
They will also attempt to communicate backward and for-
ward to other agents that may attach themselves to the group.
Thus, if B attaches to C, by rule 7, it will send a GE message
to C, and, by rule 6, it will send an AV message to any poten-
tial agent that may attach to it. Continuing this exercise and
comparing with the bottom image of Fig. 2 shows that the
original pattern is completely rebuilt. It follows that the self-
assembly process introduced in this paper is self-repairing. It
is also self-reproducing in the following sense. Suppose we
take the final pattern of Fig. 2, break it into connected pieces
that are at least two agents long, and move them apart. Each
piece will repair itself and construct a whole pattern.

It is interesting to note that a robot has no explicit lo-
calization mechanism, but its position relative to the other

Fig. 3 Modified Bresenham’s algorithm

robots in the structure is encoded in the parameter P of the
grow edge messages that it receives. Hop counter increment-
ing and decrementing operations serve to keep track of po-
sitions in the structure, and to signal the end of edges.

4 Building edges

The “edge rules” 1–8 of Table 1 suffice to build any horizon-
tal (i.e., in the x direction) or vertical (i.e., in the y direction)
edge. These rules are parameterized by edge ID and length,
L. The values of these parameters are set in “vertex rules”
such as 9–10 in the table. When a robot receives a GE or AE
message, it reads the values of ID and L in the message and
instantiates the appropriate rule with those values bound to
the parameters. If the generic edge rules 1–8 are placed in
every robot’s rule set, all that the compiler needs to do is to
generate vertex rules for each vertex of the structure, ensur-
ing that such rules pass the correct parameters to the generic
edge rules.

What about edges that are not orthogonally oriented?
This requires a more elaborate rule set. We approximate line
segments with sets of connected agents by using a modi-
fied version of Bresenham’s algorithm for scan conversion
(Bresenham 1965). Bresenham’s algorithm is well known in
the computer graphics field. For completeness we review it
briefly here, and explain how to modify it for our purposes.

Figure 3 illustrates the principles underlying the algo-
rithm. We cover the plane with a uniform grid and associate
the center of an agent’s position to each node of the grid.
For simplicity, we describe the algorithm for line segments
in the first octant, i.e., with slopes not exceeding unity. Other
octants are easily handled by using symmetry, and here and
in the remainder of the paper we omit the details needed to
deal with lines that are not in the first octant. The goal of
Bresenham’s algorithm is to compute an approximation to
the line as a set of grid points.

We assume that we are processing the line from left to
right, and that at a certain stage in the computation the line is
being approximated by a grid node with coordinates (x, y)

as shown in the figure. We continue to assume throughout
this paper that the robots are oriented along the x, y axes.
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Fig. 4 Two-step change of scan
lines in the modified
Bresenham’s algorithm

The error e between the line and its approximation is mea-
sured in the y direction. Let dx and dy be the lengths of
the x and y projections of the entire line segment on the
two principal axes, and let m = dy/dx be the slope of the
line. The lengths dx and dy are measured in grid nodes and
therefore are integers; m is usually not an integer. The slope
constraint implies that dy ≤ dx.

At point (x, y) we must decide whether to move along the
same “scanline” (in the graphics terminology) to (x + 1, y),
or to change scanlines. In the original Bresenham algorithm,
a scanline change is done by moving to (x + 1, y + 1). For
assembly agents, though, changing to a different scanline is
a two-step process, because agents have no direct way to
send a message (or attach themselves) diagonally. Instead,
one agent has to send a message sideways to the direction of
propagation of the received message, to (x, y + 1), and then
the agent that receives the message has to resend it side-
ways again, but this time at an angle that results in the mes-
sage moving in the same direction as it was originally, i.e.,
to (x + 1, y + 1). This results in the message reaching the
correct position, but produces results that differ from Bre-
senham’s line approximations by having an agent where the
Bresenham algorithm would not produce a filled pixel. Fig-
ure 4 illustrates the process of changing to a new scanline.
First, agent A receives a message, which its rules determine
should be sent left. Then agent B receives that message and
its rules determine that the message should be sent right. In
both cases left and right are relative to the direction in which
the message is propagating at the time the rules are applied
to it, and so the net result is that the message is shifted to
a different scanline and continues propagation in the same
direction that it was originally moving.

Observe from Fig. 3 that between x and x + 1 the error
increases by the value of the slope, to e + m. If the new
error is less than 0.5, point (x + 1, y) is the closest node,
and we should remain in the same scanline. Otherwise, we
should change scanlines, by the two-step procedure outlined
above. In step 1 we move to (x, y +1) and the error becomes
e′ = e − 1. In step 2 we move to (x + 1, y + 1) and the error
is updated to e′′ = e′ + m = e + m − 1. These rules can be
summarized as follows:

Same Scanline:

Test: e + m < 0.5
Update: e ← e + m

New Scanline:

Test: e + m ≥ 0.5
Step 1: Update: e ← e − 1
Step 2: Update: e ← e + m

Computationally it is more efficient to work with an integer
version of the algorithm. To do this we define another error
measure as ε = 2(e · dx + dy) and rewrite the above rules
in terms of it. Simple algebraic manipulations, taking into
account that m = dy/dx, yield:

Same Scanline:

Test: ε < dx

Update: ε ← ε + 2dy

New Scanline:

Test: ε ≥ dx

Step 1: Update: ε ← ε − 2dx

Step 2: Update: ε ← ε + 2dy

These rules use only integer operations. They are correct
but insufficient. Comparing the error to the “high” thresh-
old H = dx is enough to determine if one should stay in the
same scanline or move to a new one, and to execute the first
step of the scanline change. Thus, in Fig. 4, agent A decides
to send its message left by testing the error against H . But
how is agent B to know that it should send a message to
the right? We solve this problem by introducing a second, or
“low” threshold L = −dx + 2dy − 1, which is not present
in Bresenham’s original algorithm. B will know that it is the
result of step 1 of a change scanline operation if the error
is below the low threshold. We prove in Appendix that this
method is correct.

In summary, we compare the error ε with the two thresh-
olds, H and L. If L < ε < H we continue in the same scan-
line; if ε ≥ H we go left, i.e., we initiate step 1 of the change
scanline protocol; and if ε ≤ L we go right, i.e., execute
step 2.

We are now ready to discuss a complete edge rule. The
grow edge messages have the following parameters, most
of which have obvious meanings, in light of the previous
discussion.

• edgeId
• counter: this is analogous to the P parameter of

Sect. 3 and counts the number of hops until the next ver-
tex.

• edgeLength
• epsilon
• highThreshold
• lowThreshold
• twoDx
• twoDy

All of these parameters are constant while growing an edge,
except for counter and epsilon. Therefore, we denote
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below a grow edge message simply by GE (counter, ep-

silon). The messages sent in the opposite direction to the

grow edge messages, called AE for “acknowledge edge” in

the previous example, have the same parameters as the grow

edge messages. Note that we could compute the thresholds

on the fly and save some bandwidth, but we chose not to do

so in the current implementation so as to reduce the number
of computational operations required of the robots.

The edge rule is conceptually equivalent to the following
self-explanatory pseudo-code inspired by the C++ family
of languages. The directions forward, right and left are rela-
tive to the direction of the incoming message. The computa-
tion of epsilon in the AE messages will be explained shortly.

if GE(counter, epsilon) is received then {
if (epsilon>lowThreshold and epsilon<highThreshold) then {
if counter == 0 then send forward GV message
else send forward GE(counter - 1, epsilon + twoDy);
if counter == edgeLength then send backward AV message
else send backward AE(counter + 1, epsilon - twoDy);
}

else if epsilon>=highThreshold then {
if counter == 0 then send left GV message
else send left GE(counter - 1, epsilon - twoDx);
if counter == edgeLength then send backward AV message
else send backward AE(counter + 1, epsilon - twoDy);

}
else if epsilon<=lowThreshold then {
if counter == 0 then send right GV message
else send right GE(counter - 1, epsilon + twoDy);
if counter == edgeLength then send backward AV message
else send backward GE(counter + 1, epsilon + twoDx);

}
}

The updating rules for epsilon in the AE messages are
justified as follows. Given the current value of epsilon, its
previous value must either be ε − 2dy or ε + 2dx, because
of the form of the updating rules. The latter only applies
when a step 2 of the change scanline protocol is executed.
We argued earlier (and prove in Appendix) that we can tell
when this happens simply by checking if ε ≤ L.

This pseudocode generalizes rules 1 to 4 of Table 1 to
oblique lines. We also need another rule for acknowledge
edge (AE) messages, to generalize Rules 5 to 8 of Table 1 to
arbitrarily-oriented lines. This AE rule is very similar to the
GE rule shown above, can be derived in a similar manner,
and will not be discussed further here. In summary, all the
edges of a polygonal boundary can be constructed by using
only one generic rule for GE messages, and another for AE
messages. (Recall that we are here and elsewhere in the pa-
per ignoring the fact that lines in different octants need to be
accommodated.)

5 Compilation

The software module that converts a representation of the in-
put polygon into the set of rules that constitutes the program

of every robot is called the compiler, and runs off-line. In
the previous sections we have already discussed many of the
processes involved in the compilation, but it is worth con-
solidating here all the relevant information.

The input to the compiler is an array of N + 1 vertices,
each defined by its x, y coordinates. Normally, the last and
first vertices coincide, to ensure that the polygon closes, but
the algorithms would also deal correctly with open polyg-
onal boundaries, polygons with internal holes, and self-
intersecting polygons. (For simplicity of exposition, we as-
sume closed polygons without holes or self-intersections in
the sequel.) The compiler performs several geometric com-
putations to ensure that sharp acute angles, internal holes,
and so on, are handled correctly. (These computations could
be avoided if we placed some simple restrictions on the in-
put polygons, and are not interesting from the viewpoint of
swarm robotics.) Here we will ignore such details and as-
sume that we have a polygonal boundary that can readily
be approximated by a set of our robots. We must ensure that
two adjacent robots on the boundary meet at a common face,
and not just on vertices, otherwise message passing would
be impossible and the structure would fall apart.
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Two successive vertices define an edge, for a total of N

edges. (Here we are simplifying things a bit, to avoid unnec-
essary and perhaps confusing details. The system can also
deal with adjacent vertices, without any edge between them;
such configurations are sometimes generated by the geomet-
ric pre-processor, e.g. when two edges meet at a very acute
angle.) For each edge, the compiler computes its character-
istic parameters such as length and slope, plus the thresh-
olds H and L needed by the edge rules. It outputs a generic
GE and a generic AE rule that were described in the pre-
vious section and generalize rules 1 through 8 of Table 1.

In addition, it outputs two vertex rules per edge incident
on each vertex. These generalize rules 9 and 10 of Table 1.
Therefore, the robot program occupies a constant amount
of memory (for the generic edge rules) plus space linear on
the number of edges (for the vertex rules). The size of the
program depends on the physical dimensions of the poly-
gon only through the number of bits of the integers that are
used to encode the length of the edges and associated hop
counters.

The compiler can be described by the following pseudo-
code.

Write the generic edge rules discussed in Sect. 4;
Read array v[i],i=1,N+1, containing the vertex coordinates;
for i=1 to N do {
e[i] = lineSegment(v[i], v[i+1]);
edgeLength[i] = distance(v[i], v[i+1]);
dx = project e[i] on x axis; twoDx[i] = 2 * dx;
dy = project e[i] on y axis; twoDy[i] = 2 * dy;
H[i] = dx;
L[i] = -dx + 2*dy - 1;
inDir[i] = closest axis to the direction of the edge;
endEpsilon = execute edge rule and extract final epsilon;
Write vertex rules for vertex i;

}

The distance between vertices is measured as the num-
ber of hops between the first and last non-vertices of the
line segment. The variable inDir indicates the direction of
the interior of the polygon, and helps implement the filling
operation discussed in Sect. 2. A function relativeDir

within the compiler uses the inDir values for two succes-
sive edges to find in which direction to send messages.

The vertex rules for a vertex incident with edges edgeId
and edgeId+ 1 are as follows.

if GV(edgeId) is received then {
i = edgeId;
j = edgeId + 1;
send in relativeDir(inDir[i], inDir[j])
GE(j, counter=edgeLength[j], edgeLength[j], epsilon=0,
H[j], L[j], twoDx[j], twoDy[j]);

send backward AE(i, counter=0, edgeLength[i],
endEpsilon[i], H[i], L[i], twoDx[i], twoDy[i]);

}
if AV(edgeId + 1) is received then {
i = edgeId;
j = edgeId + 1;
send backward GE(j, counter=edgeLength[j], edgeLength[j],
epsilon=0, H[j], L[j], twoDx[j], twoDy[j]);

send in relativeDir(-inDir[j],-inDir[i])
AE(i, counter=0, edgeLength[i], endEpsilon[i], H[i],
L[i], twoDx[i], twoDy[i]);

}
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These two vertex rules would suffice if we could guar-
antee that first edgeId would be built continuously in
one direction, then the vertex would be reached, and then
edgeId + 1 would be built. Since this is not necessarily
the case, we need two other rules similar to those above, and
which cater to the opposite building order. We omit the code
for these.

6 Simulation

The algorithms described in this paper are interesting when
there are large numbers of robots, thousands or millions of
them. In all likelihood, this will imply that the robots must
be small, possibly nanoscopic. Identical robots in such large
numbers, at such small spatial scales (or at any scales, for
that matter), and with the capabilities we assumed for our
agents, do not exist today. Therefore the algorithms can-
not yet be validated experimentally. It should be clear that
the algorithms build the desired structures correctly, unless
there is an obstacle that intersects the polygonal boundary
being built, or the number of robots is insufficient. (Obsta-
cles in the interior of the polygon simply become surrounded
by the structure and do not cause failure Arbuckle and Re-
quicha 2005.) However, the self-healing capabilities of our
scheme are not as obvious. Simulation is a valuable tool to
experiment with the system for large numbers of (simulated)
robots, and to understand its behavior.

The straightforward approach to building a simulator in-
volves discretizing time and updating the swarm state at
each clock tick. (Note that although the robots do not inter-
nally store state, in the Computer Science sense, each phys-
ical robot—and hence each simulated robot—has a physical
state that characterizes it, and the swarm itself has a phys-
ical state as well; robot and swarm physical states must be
known to the simulator, which manipulates them.) This type
of simulation quickly becomes impractical as the swarm size
increases beyond the hundreds. Therefore, we opted for a
different approach. Our simulation is driven by a prioritized
event queue. Each event has a time associated with it, and the
highest priority in the queue corresponds to the lowest value
of time. The event with highest priority is retrieved from the
queue and processed, which normally results in other events
being scheduled and added to the queue. After an event is
processed, we advance the clock to the next time something
interesting happens, i.e., to the scheduled time of the next
event in the queue.

Before we embark on a more complete description of the
simulator, we need to discuss certain details of our model
that we have ignored thus far. We associate with each robot
face a connection strength, which is zero if no other robot is
attached to that face. This strength decays as time goes by.
However, if the robot’s face receives a message, the strength

is increased. If the strength of a connection reaches zero,
the robots become disconnected. This ensures that dead ro-
bots will be deleted from the structure. Hence, messaging is
essential for keeping connectivity. Our connection strengths
are integers, and we increase or decrease them by 1 when the
strength is updated. There is a maximal value, M , at which
strength saturates, but we will ignore it here for simplicity
of exposition. Connection strengths in our model are a prop-
erty of the hardware, and their behavior requires no software
action.

Robots operate asynchronously. There is no need for a
shared clock, which would be difficult to maintain in a dis-
tributed, dynamic environment, and in the presence of fail-
ures.

The messaging model used in the system is very sim-
ple. A message is an n-tuple, or, equivalently, a bit string. In
Sect. 4 we described the various fields of a grow message,
and others are similar. A robot that is instructed by its reac-
tive rules to send a message makes the appropriate bit string
available for reading at a specified face. If there is another
robot attached to that face, the receiving robot has the ability
to read the transmitted message. However, message process-
ing takes time and the receiving robot may be busy process-
ing a previous message when a new message appears. If so,
the incoming message is simply dropped. There are no mes-
sage buffers or queues. If a reactive rule calls for sending
two or more messages, they are sent simultaneously out of
different faces. The time that it takes to process a single mes-
sage is an empirically-determined system parameter. This
time implicitly defines a message density in the system.

Robots may become attached when they collide. When
a robot motion event is processed, the trajectory of the ro-
bot is compared to the positions of other nearby robots. If a
collision with a robot that belongs to a structure is detected,
the motion stops and the colliding faces are identified. Colli-
sion detection is done with the help of a spatial grid, so that
each robot only needs to be compared with others in nearby
grid cells. (This is a standard speed-up technique in com-
putational geometry.) Each robot moves instantaneously, by
itself, while others are assumed stationary. This is physically
inaccurate but computationally very convenient, since con-
sidering the joint, simultaneous motion of all the robots is
very difficult.

The (physical) state of each robot in the simulation is kept
in an array robot[i]. Each entry in this state array con-
tains the following values:

• position in the x, y plane;
• displacement in x, y for the next movement;
• binding, an array of 4 entries corresponding to the 4

faces of the robot. Each entry indicates which face of an-
other robot, if any, binds with the face under considera-
tion, and with what strength;
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• fault information describing any simulated failures that
the robot is experiencing.

The fault condition stored in the array corresponds to a situ-
ation in which a robot ceases to transmit or respond to mes-
sages. The prioritized event queue maintains a shared time
variable called now. Each event in the queue contains the
following data:

• time;
• target robot;
• action to take upon the target robot;
• face associated with the action (potentially null);
• parameter to apply to the action (also potentially

null).

The simulation uses several random variables, which are
sampled to determine variable values needed by the process.
They are the following:

• P : sampled for position;
• V : sampled for displacement;
• T : sampled for event time;
• D: sampled for the time of a binding strength decay event;
• C: sampled to decide whether or not to change dis-
placement, i.e., the length and direction of the next
motion of a robot.

The first 4 of the variables above are Gaussian and the fifth
is binary. When P has a broad distribution, robots’ positions

are initially almost uniform over the region where the simu-
lation takes place. One can think of T and V as playing roles
related to physical temperature and energy. When the incre-
ments of time are small, the density of events increases,
which is also what happens in physical systems at high tem-
perature. The displacement values are large when the
robots travel fast, i.e., have high kinetic energy. When the
random variable C has the value 1, the displacement
of a robot changes, i.e., the robot’s direction and velocity
change, which is what would happen if it collided with par-
ticles in the medium. A distribution of C skewed towards 1
corresponds to a medium with a high density of non-robot
colliding particles.

The initial state of the simulation is determined as fol-
lows. For N − 2 robots, each component of position is
chosen by sampling P , each component of displace-
ment is chosen by sampling V , binding is set to no bind-
ings, and fault is set to no faults. Two more robots are
created in a similar way, except that they are placed immedi-
ately adjacent to one another, and bound together. The event
queue is initialized with now= 0, a message delivery event
targeting one of the bound robots, with time chosen by sam-
pling T , two binding decay events with time chosen by sam-
pling D, each targeting one of the bound robots, and motion
events for all the other robots. As we saw in earlier sections
of this paper, two correctly functioning robots that form a
stable loop are sufficient to build the goal structure.

Simulation execution proceeds thusly:

while queue not empty do {
e = event in the queue with the lowest time;
now = e.time;
if (e.action == MESSAGE) then {
e.target.receiveMessage(e.face, e.parameter);
e.target.binding[e.face].strength += 1;
addToQueue(DECAY, e.target.binding[e.face], time = now + sample(D));

}
else if (e.action == DECAY) then {
e.target.binding[e.face].strength -= 1;
if (e.target.binding[e.face].strength == 0) then {
otherRobot = robot bound to e.target on e.face;
otherFace = bound face of otherRobot;
e.target.binding[e.face] = null;
otherRobot.binding[otherFace] = null;
// Disconnect the two robots

}
}
else if (e.action == MOVE) then {
check for collisions for motion from e.target.position
to e.target.position + e.target.displacement;
if (no collision) then {
e.target.position += e.target.displacement;
if (sample(C) == 1) then
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e.target.displacement = sample(V);
addToQueue(MOVE, e.target, time = now + sample(T);
}
else {
e.target.position = collision location;
// Binding involves a robot alignment process
e.target.binding[collision face] = collided robot with strength 1;
addToQueue(DECAY, e.target.binding[collision face], time = now + sample(D));
}

}
}

Here the receiveMessage procedure triggers the ex-
ecution of the appropriate edge and vertex rules discussed
in earlier sections. These executions, in turn, generate more
events that get added to the queue.

7 Results and discussion

We have tested the algorithms extensively, by running on
the order of 200 simulations, each involving from 4,000
to 10,000 robots. Figure 5 shows a few examples of struc-
tures constructed by the system. All of them have complete
boundaries, but their interiors are at varying degrees of com-
pleteness, which depend on when the process was (man-
ually) stopped. Note that the nature of the algorithms im-
plies that interior completion can only be ensured in an as-
ymptotic and probabilistic sense. Robot colors in the figures
are assigned by the simulator: red robots are receiving ver-
tex messages, blue robots are receiving edge messages, and
black robots have not recently received any message. Fig-
ure 6 illustrates the construction process by showing a few
frames produced by the simulator while building the bound-
ary of an asymmetric star.

The self-repair capabilities of the algorithms were tested
by simulating communication faults. All of the simulations,

including those shown in the figures, have a probability of
message dropping and message corruption. For every mes-
sage transmission we assume a 5% probability that the mes-
sage will be dropped, and (independently) a 10% proba-
bility that it will be corrupted. Message corruption is ac-
complished by randomly flipping one bit of the message.
These errors have never prevented successful completion of
polygonal boundaries in any of our experiments, except dur-
ing the vulnerable period when only the original two robots
are exchanging messages, before any others have joined the
structure. When either of these two probabilities reaches a
structure-dependent higher value, typically on the order of
20%, the structure tends to fall apart. In one experiment, an
8 × 8 square tolerated a 20% drop rate.

We also simulated another type of fault, in which robots
stop sending or receiving messages. This is done by set-
ting fault conditions on the robots’ (physical) state array, as
explained in the Simulation section. Figure 7 shows a few
frames of a simulation in which a key-like structure is be-
ing built when a group of (yellow) robots near the lower
end of the key become faulty. The faulty robots are detached
from the others because their connection strengths decrease
to zero. Then they wander away under random motion, and

Fig. 5 Examples of structures
built by the system
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Fig. 6 Construction of a
complex asymmetric shape

Fig. 7 A completed key-like
boundary is damaged by forcing
the robots around the structure’s
lower point to fail. The structure
recovers from the damage and
self-repairs

are replaced by new, well-functioning robots. This results in
a correct, self-repaired structure.

Finally, we tested the system’s ability to self-replicate.
This is a weak form of self-replication since an external ac-
tion is required to break a structure being built. Figure 8
and Video 2 illustrate this behavior. The key-like structure of
Fig. 7 is being built when an external force (imposed manu-
ally by the experimenter) breaks the structure into two. Each
of these regenerates the goal structure.

Message dropping also occurs naturally in the system
when the robots cannot keep up with the incoming mes-
sages, and simply ignore them. The tolerance of our method
to message corruption and dropping comes from the depen-

dence of swarm behavior on reinforcement. A randomly-
corrupted message may cause a robot to attempt a binding
on one of its faces, but it is very unlikely that the same cor-
rupted message will be transmitted with enough frequency
to keep that binding request active. Similarly, random mes-
sage dropping tends not to matter as long at it is moder-
ate, because it is unlikely that enough messages will be
dropped for a binding to break. (Complete cessation of mes-
sage transmission does cause bindings to break, as shown
in the example of Fig. 7, but the structures are later healed,
as long as there are enough well-functioning robots.) The
system is robust in the presence of transmission errors, but
is not entirely immune to such errors. The probability of
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Fig. 8 A partially completed key-like shape is broken in two, with the result that two complete copies of the structure are created

corrupted messages building an erroneous reinforcing loop
is very small but not zero, and we have observed rare ex-
amples of faulty constructions due to message corruption.
These happened when we let the process run for a long time
after the boundary was completed.

The efficiency of the algorithms needs further, more sys-
tematic study. Recent work (Tangchoopong and Requicha
2009) shows that the time required to complete the bound-
ary of a square is linear in the size of the square, measured by
the number of robots needed to form an edge. These results
have numerous qualifiers; for example, they depend strongly
on the assumed statistics of the initial robot distribution. The
problem of meaningfully evaluating the performance of al-
gorithms such as ours remains largely open.

The memory requirements of the agents are quite low,
consistent with our desire to use vast numbers of simple
robots for construction tasks. (Note that, although the ro-
bots do not store their computational state, they need mem-
ory to store their rules, or programs.) The number of fields
per message is constant, with 11 being sufficient, and so the
number of fields per rule is also constant. (For example, the
edge rules of Sect. 4 have 8 parameters, plus a message type
and two additional parameters needed for capabilities not
described in this paper.) The sizes of fields are either con-
stant or grow with the log of the maximum line length in
the structure. The number of rules that must be stored in
memory grows linearly with the number of vertices. Thus
the memory requirements for even very complex structures
on scales much larger than the individual agents are not tax-
ing. For example, the set of specific rules for building the
polygonal boundary of Fig. 7 occupies a space of 812 bytes.

If we expand the maximum line length to 256 agents the pro-
gram grows to 1044 bytes, and if we expand the maximum
line length to approximately 2 × 109 agents, the program
grows to only 4814 bytes.

If the robots’ memory is writable by external means, then
the robots are recyclable. The same group of robots can be
used to form one structure, then tossed back into the mix
and reprogrammed for a different structure at any time, and
as many times as desired. There is no physical difference
between robots that construct one structure and agents that
construct a different one.

8 Conclusion

This paper describes a method by which swarms of sim-
ple and identical reactive agents (i.e., robots) can be pro-
grammed to build and repair structures from a large class
of geometric forms. As a side effect of the behavior of the
agents, the structures built from them exhibit the ability to
heal, and the ability to reproduce when they are broken by
an external force. The assembly agents may be re-used when
the structures are no longer needed. The algorithms use very
limited computational resources and are suitable for imple-
mentation in minimalistic robots.

We present a complete solution of the global-to-local
compilation problem for a shape-building task. The com-
piler we designed and implemented generates automatically
the reactive rules used by the robots to construct any poly-
gon in the plane.
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The algorithms discussed in this paper are most attractive
at small scales and with large numbers of agents. Unfor-
tunately, micro or nanoscale artificial physical agents with
the characteristics assumed here do not yet exist. This pa-
per serves as motivation to build such agents, since the arbi-
trary structures constructed by them could find applications
ranging from scaffolds for nanoelectronic component place-
ment, to cell repair and tissue regeneration, to construction
of macroscale goods.

We believe, but have not yet demonstrated, that the tech-
niques introduced here may be extended to three dimensions
either by working on successive slices of the object to be
produced (as in rapid prototyping systems), or by first build-
ing faces as two dimensional structures and then filling in
the three dimensional interior of the resulting polyhedral ap-
proximation.

Several interesting issues remain open, some specific to
the algorithms presented here, others of a more general na-
ture. Here are some examples. What are the completion rates
for the algorithms? How do they depend on the shapes being
built? What are the effects of positional uncertainties, and
how can these be mitigated? How are self-repair capabilities
to be assessed quantitatively? How is the performance of
self-organizing algorithms, including robustness and adapt-
ability, to be measured in the presence of a dynamic environ-
ment? How is parallelism related to the shapes being built
and the algorithms being used to build them? What is the
interplay between state, communications, and self-repair?
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Appendix: Proof of the modified Bresenham’s
algorithm

First note that H ≥ L. This follows from dx ≥ dy by adding
−dx + dy − 1, which is a negative number, to the right side
of the previous inequality. Suppose now that we are at point
(x, y) where the decision is to continue in the same scan-
line. Then we must have ε ≤ dx − 1, because otherwise
we would need to change lines since the error would reach
the high threshold. Moving now to the next pixel along the
same scanline, the error will increase by 2dy. Adding this
quantity to both sides of the inequality just above yields
ε + 2dy = ε′ ≤ dx + 2dy − 1. Since we are analyzing step 1
of the scanline change protocol, we also know that the error
must now be above the high threshold, i.e., ε′ ≥ dx. There-
fore, before step 1 of the scanline change protocol we have
the following inequalities: dx ≤ ε′ ≤ dx + 2dy − 1. Now,
executing step 1 will decrease the error by 2dx. Subtract-
ing this quantity from the previous inequality yields −dx ≤
ε′′ ≤ −dx +2dy −1 = L. This proves that the error is below

the low threshold after step 1 of a scanline change. Execut-
ing step 2 increases the error by 2dy. Adding this quantity
to both sides of the left inequality just above reveals that
−dx + 2dy ≤ ε′′′, and a fortiori also −dx + 2dy − 1 ≤ ε′′′.
This proves that after step 2 of a change of scanline the er-
ror is always larger than the low threshold. It remains to be
shown that the error is also above L when we move along
the same scanline. This is trivial since, after the first pixel,
the error always increases by 2dy when we move to the next
pixel, and 2dy > L. Therefore an agent can tell that it is the
result of step 1 of a change scanline operation by checking
that its error value is below L.
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