

Mimicking the breast metastatic microenvironment: characterization of a syngeneic model of HER2 positive breast cancer

Valerie H. Narumi²*, Aaron G. Baugh¹*, Edgar Gonzalez¹*, Jesse Kreger³, Sofi Castanon¹, Julie Jang¹, Christine Rafie⁴, Luciane T. Kagohara^{5,6,7}, Simon Davenport⁸, James Leatherman^{5,7}, Todd Armstrong^{5,7}, Srinivasan Yegnnasubramanian^{5,6,7}, Elana J. Fertig^{5,7,8,9,10}, Satoshi Murata¹¹, Elizabeth M. Jaffee^{5,6,7}, Michael Press⁸, Adam MacLean³, Evanthia T. Roussos Torres¹

¹Department of Medicine-Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA ²Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA ³Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA ⁴University of Miami Miller School of Medicine, Miami, FL, USA ⁵Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

INTRODUCTION

Breast cancer remains a leading cause of global cancer incidence in women, causing >685,000 deaths yearly, with most breast cancer deaths resulting from metastatic burden. The survival rate for triple-negative breast cancer and HER2overexpressing breast cancer is the lowest. Immune checkpoint inhibition has revolutionized cancer treatment, providing durable response to patients with advanced disease. These findings have been made possible through the utilization of mouse models, which allows us to understand tumor biology in an immune system close to humans. However, current models of breast cancer are limited in the ability to thoroughly study the metastatic tumor microenvironments: the NT2.5 model allows for spontaneous metastatic growth, but occurs with low penetrance; the 4T1 model has rapid mammary tumor growth, which necessitates euthanasia of mice before adequate growth of metastases. Thus, we aimed to develop the NT2.5-LM syngeneic model of spontaneous metastatic disease with increased penetrance of metastasis without reaching the end point too quickly.

METHODS

		NT2	.5 Bre	east Tu
ErbB2				
Ki67				
•	In viva differe growth area ra lung m NT2.5 decrea ratio o total lu increa metas	experences i n rate, atios, a netasta -LM ta ased su of lung ung tis sed nu tases	riment n surv lung n and the ases il vein urviva metas sue an imber	s show rival , tu netasta e numb model l, increa stasis a rea, and of lung
	Figu	re 3 :	Who	ole Ex
	<u>C</u>	ommo	<u>on bre</u>	east ca
	NT2.5		NT2.5L	М
	RAD51C	PTEN BRCA2 ATM CDH1 CHEK2 NF1 Arid1a Pik3ca	BRCA	1
		ESR1		
	ggagacc E T	ESR1 tgc tatggar	tcgg agget G S E A	gacca gtgt → A _{NT2.5L} D Q C
	ggagacc E T gacctct	ESR1 tgc tatggat c y g cct acatgc	tcgg aggct G S E A ctat ctgga	gacca gtgt → A _{NT2.5L} D Q C agtac ccgga
	ggagacc E T gacctct D L S gaggctg	ESR1 tgc tatggat c Y G cct acatgco s Y M T	tcgg aggct G S E A ctat ctgga P I W	$\frac{1}{2} \qquad \qquad$
	ggagacci E T gacctct D L S gaggctg R G C cctaatci	ESR1	tcgg aggct G S E A ctat ctgga ctat ctgga Q R A cgac agaag	$\frac{1}{2} \qquad \qquad$
	ggagacc E T gacctct D L S gaggctg R G C cctaatc L I cccaacc	ESR1 tgc tatggat C Y G cct acatgco S Y M I ccc agcagag P A E aaa cgaaggo K R R agg ctcagat	Ctat ctgga Ctat ctgga D I W Cgag agago Q R A Cgac agaag R Q K	$\begin{array}{c} gacca gtgt \\ \hline & A_{NT2.SL} \\ D Q C \\ agtac ccgga \\ \hline \\ cagcc cagt \\ S P V \\ atccg gaag \\ I R K \\ \hline \\ ctaaag gaga \\ \hline \\ \hline \\ G_{MT2} \\ \hline \end{array}$
	ggagacc E T gacctct D L S gaggctg R G C cctaatc L I cccaacc	ESR1 tgc tatggat C Y G cct acatgco S Y M T ccc agcaga P A E aaa cgaaggo K R R agg ctcagat	tcgg aggct G S E A ctat ctgga ctat ctgga Q R A cgac agaag R Q K tgcg gatco A A A R I	$\begin{array}{c} c \ c \ c \ c \ c \ c \ c \ c \ c \ c$
	ggagacci E T gacctct D L S gaggctg R G C cctaatci L I cccaacci P N C tcccaga	ESR1 tgc tatggat C Y G cct acatgco S Y M B ccc agcagag P A E aaa cgaaggo K R R agg ctcagat Q A Q B tgg ggagaa G E N	tcgg aggct G S E A ctat ctgga ctat ctgga cgac agaag R Q K tgcg gatco A tgcg gatco A A R I cgtg aaaat	$\begin{array}{c} gacca gtgtq \\ \rightarrow & A_{NT2.5L} \\ D & Q & C \\ \\ agtac ccgga \\ K & Y & P & C \\ \\ agtac ccgga \\ K & Y & P & C \\ \\ ccgcc cagtq \\ S & P & V \\ \\ atccg gaaga \\ \hline S & P & V \\ \\ atccg gaaga \\ \hline S & P & V \\ \\ atccg gaaga \\ \hline S & P & V \\ \\ atccg gaaga \\ \hline S & P & V \\ \\ atccg gaaga \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C \\ \hline S & P & V \\ \hline S & C & C $
	ggagacc E T gacctct D L S gaggctg R G C cctaatc L I cccaacc P N C tcccaga I P D catggct	ESR1	C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} c \ c \ c \ c \ c \ c \ c \ c \ c \ c$
	ggagacci E T gacctct D L S gaggctg R G C cctaatci L I cccaacci P N C tcccaga I P D catggct M A	ESR1 tgc tatggat C Y G cct acatgca S Y M I ccc agcagag P A E aaa cgaagga K R R agg ctcagat G E N ggt gtgggtt A → G G V G	C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} gacca gtgt \\ \rightarrow & A_{NT2.5L} \\ D & Q & C \\ agtac ccgga \\ K & Y & P & C \\ agtac ccgga \\ S & P & V \\ atccg gaag \\ I & R & K \\ cagcc cagt \\ S & P & V \\ atccg gaag \\ \hline S & P & V \\ atccg gaag \\ \hline S & P & V \\ atccg gaag \\ \hline S & P & V \\ atccg gaag \\ \hline S & P & V \\ atccg gaag \\ \hline S & P & V \\ atccg gaag \\ \hline S & P & V \\ \hline S & R \\ \hline C & C & C & C \\ \hline P & \rightarrow & P \\ V & S & R \\ \hline C & QUENC \\ \hline \end{array}$

le exome sequencing shows no differences between NT2.5 and NT2.5-LM

⁶Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA ⁷Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA ⁸Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA ⁹Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA ¹⁰Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA ¹¹Department of Surgery, Shiga University of Medical Science, Hospital Seta Tsukinowa-Cho Otsu-City, Japan

RESULTS

CONCLUSIONS

- Here, we characterized a syngeneic murine breast tumor cell line, NT2.5-LM that provides a model of spontaneously metastatic neu-expressing breast cancer
- NT2.5-LM is HER2+ and shows metastatic potential shown by flow data in comparison to NT2.5 and NT4, Ki67 markers in IHC, and murine experiments.
- NT2.5-LM cells shows upregulation of epithelial-tomesenchymal transition, expressing increased levels of Vimentin and a highly invasive and aggressive phenotype compared to NT2.5
- NT2.5-LM can be utilized to further understand different therapies, metastatic progression, and the characteristics of the metastatic tumor microenvironment.

ACKNOWLEDGEMENTS

Thank you to Dr. Roussos Torres, everybody in the Roussos Torres lab, and my committee members Dr. Epstein and Dr. Marconett for all their support.

Created with BioRender Poster Builde