On safety in distributed computing

Srivatsan Ravi

On safety in distributed computing

- Something "bad" never happens
- Some invariant holds at every step in the execution
- If something bad happens in an execution, it happens because of some particular step in the execution

- A property is a set of histories
- What does it mean for a set of histories exported by a concurrent implementation to be safe?

- The Alpern-Schneider topology
- 2 The Lynch definition

Alpern-Schneider Topology

A property O is *finitely observable* iff:

 $\forall H \in \mathcal{H}_{inf} : H \in O \Rightarrow (\exists H' \in \mathcal{H}_{fin}; H' < H \land (\forall H'' \in \mathcal{H}_{inf}; H' < H'', H'' \in O))$

- If O₁, O₂, ..., O_n are finitely observable, then ∩ⁿ_{i=1}O_i is also finitely observable
- The potentially infinite union of finitely observable properties is also finitely observable.

Alpern-Schneider Topology

A property O is *finitely observable* iff:

 $\forall H \in \mathcal{H}_{inf} : H \in O \Rightarrow (\exists H' \in \mathcal{H}_{fin}; H' < H \land (\forall H'' \in \mathcal{H}_{inf}; H' < H'', H'' \in O))$

- If O₁, O₂,..., O_n are finitely observable, then ∩ⁿ_{i=1}O_i is also finitely observable
- The potentially infinite union of finitely observable properties is also finitely observable.

The set ${\mathcal O}$ of finitely observable properties is a topology on ${\mathcal H}_{inf}$

Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

- Safety properties are the closed sets in the topology
 - A set if closed if its complement is open
 - A closed set contains all its limit-points
- AS-topology defined on the set of infinite histories
- Notion of safety not defined for finite histories

Safety property [Lynch, Distributed Algorithms]

- every prefix H' of a history $H \in \mathcal{P}$ is also in \mathcal{P}
 - *prefix-closure*: an incorrect execution cannot turn into a correct one in the future

Safety property [Lynch, Distributed Algorithms]

- every prefix H' of a history $H \in \mathcal{P}$ is also in \mathcal{P}
 - *prefix-closure*: an incorrect execution cannot turn into a correct one in the future
- for any infinite sequence of finite histories H⁰, H¹,... such that for all *i*, Hⁱ ∈ P and Hⁱ is a prefix of Hⁱ⁺¹, the infinite history that is the *limit* of the sequence is also in P.
 - *limit-closure*: the infinite limit of an ever-extending safe execution must be also safe.

Safety property [Lynch, Distributed Algorithms]

- every prefix H' of a history $H \in \mathcal{P}$ is also in \mathcal{P}
 - *prefix-closure*: an incorrect execution cannot turn into a correct one in the future
- for any infinite sequence of finite histories H⁰, H¹,... such that for all *i*, Hⁱ ∈ P and Hⁱ is a prefix of Hⁱ⁺¹, the infinite history that is the *limit* of the sequence is also in P.
 - *limit-closure*: the infinite limit of an ever-extending safe execution must be also safe.

Sufficient to prove all finite histories are safe

Prefix-closure

Constructively from the extended history

Limit-closure

Application of *König's Path Lemma*:

If G is an infinite connected finitely branching rooted directed graph, then G contains an infinite sequence of non-repeating vertices starting from the root

- A property that is not limit-closed
- Proving limit-closure of safety properties using König's Path Lemma

Transactions

- Sequence of *abortable reads* and *writes* on *objects*
- Transactions can *commit* by invoking *tryC* (*take effect*) or *abort*

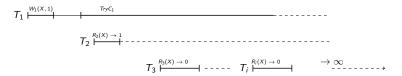
Transactions

- Sequence of *abortable reads* and *writes* on *objects*
- Transactions can commit by invoking tryC (take effect) or abort

Opacity

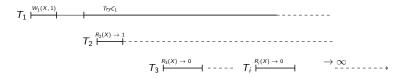
- History is *opaque* if there exists an equivalent *completion* that is legal and respects the real-time order of transactions.
 - Totally-order transactions such that every t-read returns the value of the latest written t-write.
- Completion by including matching responses to incomplete t-operations and aborting incomplete transactions

Opacity and limit-closure



- Mutually overlapping transactions
- **2** Suppose a serialization S of H exists
 - There exists $n \in \mathbb{N}$; $seq(S)[n] = T_1$
 - Consider the transaction T_i at index n+1
 - For any $i \ge 3$, T_i must precede T_1 in any serialization

Opacity and limit-closure



- Consider the set of histories in which every transactional operation is complete in the infinite history?
- Is the resulting property limit-closed?

Live set of T

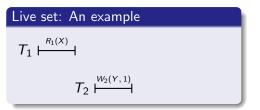
 $Lset_H(T)$: T and every transaction T' such that neither the last event of T' precedes the first event of T in H nor the last event of T precedes the first event of T' in H.

T' succeeds the live set of T ($T \prec_{H}^{LS} T'$) if for all $T'' \in Lset_{H}(T)$, T'' is complete and the last event of T'' precedes the first event of T'.

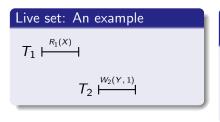
Live set of T

 $Lset_H(T)$: T and every transaction T' such that neither the last event of T' precedes the first event of T in H nor the last event of T precedes the first event of T' in H.

T' succeeds the live set of T ($T \prec_{H}^{LS} T'$) if for all $T'' \in Lset_{H}(T)$, T'' is complete and the last event of T'' precedes the first event of T'.



- T_1 and T_2 overlap
- Live set of $T_1 = \{T_1\}$
- T_2 succeeds the live set of T_1



We can find a serialization in which T_1 precedes T_2

Given any serialization of a du-opaque history, permute transactions without rendering any t-read illegal.

Lemma

Let H be a finite opaque history and assume $T_k \in txns(H)$ be a complete transaction in H such that every transaction in $Lset_H(T_k)$ is complete in H. Then there exists a serialization S of H such that for all $T_k, T_m \in txns(H)$; $T_k \prec_H^{LS} T_m$, we have $T_k <_S T_m$.

Step 1: Construction of rooted directed graph G_H

Vertices of G_H

- Root vertex: (H⁰, S⁰) (empty histories)
- Non-root vertex: (Hⁱ, Sⁱ)
- Sⁱ is a serialization of Hⁱ
- S^i respects *live set* relation

Step 1: Construction of rooted directed graph G_H

Vertices of G_H

- Root vertex: (H⁰, S⁰) (empty histories)
- Non-root vertex: (H^i, S^i)
- S^i is a serialization of H^i
- S^i respects *live set* relation

Edges of G_H

- cseq_i(S^j); j ≥ i: subsequence of seq(S^j) reduced to transactions that are complete in Hⁱ w.r.t H
- $(H^i, S^i) \rightarrow (H^{i+1}, S^{i+1})$ if $cseq_i(S^i) = cseq_i(S^{i+1})$

Opacity and limit-closure: König's Path Lemma

G_H is finitely branching

Out-degree of (H^i, S^i) bounded by the number of possible permutations of the set $t \times ns(S^{i+1})$.

Step 2: Application of König's Path Lemma

If G is an infinite connected finitely branching rooted directed graph, then G contains an infinite sequence of non-repeating vertices starting from the root.

G_H is finitely branching

Out-degree of (H^i, S^i) bounded by the number of possible permutations of the set $txns(S^{i+1})$.

G_H is connected

- Given (H^{i+1}, S^{i+1}) , $\exists (H^i, S^i)$: $seq(S^i)$ is subsequence of $seq(S^{i+1})$
- seq(Sⁱ⁺¹) contains every complete transaction that takes its last step in H in Hⁱ
- $cseq_i(S^i) = cseq_i(S^{i+1})$
- Iteratively construct a path from (H⁰, S⁰) to each (Hⁱ, Sⁱ)

Step 2: Application of König's Path Lemma

G_H is an infinite finitely branching connected rooted directed graph

- *G_H* is infinite (by construction)
- Apply König's Path Lemma to G_H
 - Derive infinite sequence \mathcal{L} of non-repeating vertices of G_H starting from root

Step 2: Application of König's Path Lemma

G_H is an infinite finitely branching connected rooted directed graph

- *G_H* is infinite (by construction)
- Apply König's Path Lemma to G_H
 - Derive infinite sequence \mathcal{L} of non-repeating vertices of G_H starting from root

$$\mathcal{L} = (H^0, S^0), (H^1, S^1), \dots, (H^i, S^i), \dots$$

In
$$\mathcal{L}$$
, $\forall j > i : cseq_i(S^i) = cseq_i(S^j)$

Step 3: Define a bijective mapping from txns(H) to \mathbb{N}

$$f: \mathbb{N} \to txns(H):$$

$$f(1) = T_0$$

$$\forall k \in \mathbb{N} \setminus \{1\}: f(k) = cseq_i(S^i)[k]; i = min\{\ell \in \mathbb{N} | \forall j > \ell:$$

$$cseq_\ell(S^\ell)[k] = cseq_j(S^j)[k]\}$$

Step 3: Define a bijective mapping from $t \times ns(H)$ to \mathbb{N}

$$f: \mathbb{N} \to txns(H):$$

 $f(1) = T_0$
 $orall k \in \mathbb{N} \setminus \{1\}: f(k) = cseq_i(S^i)[k]; i = min\{\ell \in \mathbb{N} | \forall j > \ell:$
 $cseq_\ell(S^\ell)[k] = cseq_j(S^j)[k]\}$

₩

Index of a transaction that is complete w.r.t H is *fixed*

On safety in distributed computing

Step 3: Define a bijective mapping from $t \times ns(H)$ to \mathbb{N}

f is bijective

for every
 T ∈ *txns*(*H*), ∃*k*:
 f(*k*) = *T*

• for every
$$k, m$$
:
 $f(k) = f(m) \Rightarrow k = m$

Why?

- Suppose
 cseq_i(Sⁱ) = [1, 2, ..., k, ...]
- If last step of T_k in H is in H^i , for all j > i:

•
$$cseq_j(S^j) = [1, 2, ..., k, ...]$$

• *T_k* remains in the same position in any extension!

Step 4: Construct a serialization S of H from f

f is bijective

- for every $T \in txns(H)$, $\exists k: f(k) = T$
- for every k, m: $f(k) = f(m) \Rightarrow k = m$

₩

$\mathcal{F} = f(1), f(2), \dots, f(i), \dots$ is an infinite sequence of transactions.

Step 4: Construct a serialization S of H from f

 $\mathcal{F} = f(1), f(2), \dots, f(i), \dots$ is an infinite sequence of transactions.

Step 4: Construct a serialization S of H from f

$$\mathcal{F} = f(1), f(2), \dots, f(i), \dots$$
 is an infinite sequence of transactions.

And finally,

Constructing S

- $seq(S) = \mathcal{F}$
- for each t-complete transaction T_k in H, S|k = H|k
- each complete T_k , but not t-complete in H, $S|k = H|k \cdot tryA_k \cdot A_k$

Step 5: Prove S is a serialization of H

Constructing S

•
$$seq(S) = \mathcal{F}$$

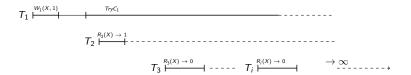
- for each t-complete transaction T_k in H, S|k = H|k
- each complete T_k , but not t-complete in H, $S|k = H|k \cdot tryA_k \cdot A_k$

S is a serialization of H

- S is equivalent to some t-completion of H
- Every t-complete prefix of S is a serialization of some complete subsequence of a prefix of H
 - S is legal
 - S respects the *real-time order* of H
 - every t-read is legal in corresponding local serialization

- Under restriction that every transaction issues only finitely many t-operations and is eventually complete, opacity is a safety property
- Take a TM implementation M in which every transactional is complete in the infinite history. Then, sufficient to prove every finite history of M is opaque

Defining safety for infinite histories



- Define an infinite history H to be opaque *iff* every finite prefix of H (including H itself if finite) is final-state opaque
- Prefix-closed and limit-closed by definition
- But no serialization defined for the infinite history. Does this matter?

Data type

Specified as Mealy machine

- In response to an input, the object makes a transition from one state to another and responds with an output
- Object transitions from one state to another after an operation specified by the *sequential specification*

Data type

Specified as Mealy machine

- In response to an input, the object makes a transition from one state to another and responds with an output
- Object transitions from one state to another after an operation specified by the *sequential specification*
- A history H is linearizable w.r.t data type τ if there exists a sequential history equivalent to some completion of H that is consistent with the sequential specification of τ and respects the real-time order of operations in H
- Completion by removing invocations or adding matching responses

Step 1: Construction of rooted directed graph G_H

Vertices of G_H

- Root vertex: (H⁰, L⁰) (empty histories)
- Non-root vertex: (H^i, L^i)
- L^i is a linearization of H^i

Edges of G_H

• $(H^i, L^i) \rightarrow (H^{i+1}, L^{i+1})$ if $cseq_i(L^i)$ is a subsequence of $cseq_i(L^{i+1})$

Step 2: Application of König's Path Lemma

G_H is finitely branching

Out-degree of (H^i, L^i) is finite for *finite types*

G_H is connected

 Iteratively construct a path from (H⁰, L⁰) to each (Hⁱ, Lⁱ)

Linearizability is prefix-closed

- Given linearization *L* of *H*, construct a linearization of the prefix of *H* by completing incomplete operations as in *L*
- For finite, deterministic and total types, linearizability is a safety property

- Liveness is defined on infinite histories, so must safety
- To prove that an implementation I satisfies a safety property P, sufficient to prove every finite history H exported by I is contained in P
 - To need to worry about the correctness of the infinite history

THANK YOU!

On safety in distributed computing